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Motivation

Compartmentalization:
-chemical reactions
-encapsulate and cultivate microorganisms

What from measurements of velocity of moving droplets?



Goal

to understand speed of flow of droplets in microfluidic channel

• non-wetting (thin layer)

• Long (Taylor) oil water

b

tube wall



Goal: theoretical explanation of speed of
a moving droplet

𝛽 =
𝑈

𝑉

velocity of droplet

average velocity of continuous phase

Mobility of droplet:



• average speed of flow of oil

• length of droplet

• viscosity of the droplet

• viscosity of the continuous phase

• interfacial tension

• presence/absence of surfactant (oil, droplet)

• gravity field

•…

Factors which influence speed of droplet



Fairbrother and Stubbs (1935)
Inviscid droplet (bubble):
-velocity of bubble different than the velocity of continuous phase

-length of bubble insignificant when larger than 3/2 of tube diameter 
(the effect of length readily observed for 𝑙 ≈ 2𝑅)

𝑙 ≥ 3𝑅

𝑈 > 𝑉

𝑙

Empirical law:
𝛽 = 1 + 𝐶𝑎

1
2 𝐶𝑎 =

𝜇𝑐𝑉

σ



Taylor (1961)
Inviscid droplet (bubble):
Validation of Fairbrother and Stubbs formula
for

Criticism of empirical ‘1.0’ factor and ‘1/2’ exponent in the above law.

𝛽 = 1 + 1.0 ∗ 𝐶𝑎
1
2

𝐶𝑎 < 0.09

𝐶𝑎 =
𝜇𝑐𝑉

σ ≈ 0.001 for V = 1
cm

𝑠

e.g. water droplet in FC-40 oil:



Bretherton (1961) – assumptions
• Second Newton’s law for fluid for small velocities (Stokes equations) + b.c.
• Incompressible fluids
• Jump of the pressure at the interface: 𝜎𝜅 𝑧

ℎ(𝑧)
𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐



Bretherton (1961) – approximations
• Lubrication approximation:
• Jump of the pressure at the interface: 𝜅 𝑧 ≈

1

𝑟 − ℎ 𝑧
+

𝑑2ℎ 𝑧

𝑑𝑧2𝜎𝜅 𝑧

 𝑣  𝑟 ≈  𝑒𝑧𝑣(𝜌, 𝑧)

ℎ(𝑧)
𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

Region in which fluid velocity inside droplet and 
continuous phase is parallel to the tube wall



Bretherton (1961) – results and approximations
• Equation for shape of the interface

ℎ(𝑧)
𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐
𝜂 𝑍 ≡

ℎ 𝑧

𝑏

𝑍 ≡
𝑧

𝑏
3𝐶𝑎

1
3,

𝑑3𝜂 𝑍

𝑑𝑍3
=

𝜂 − 1

η3

Ondulations of the profile at the rear of the droplet

Parabola at the front: 𝜂 𝑍 ≈ 𝐴 + 𝐵𝑍 + 𝑃𝑍2/2

1

𝑅𝐹(≈ 𝑟)
=

𝑑2ℎ 𝑧

𝑑𝑧2

Bretherton matching: P from numerical 
integration of 

Landau-Levitch equation



Bretherton (1961) – result for mobility

Inviscid droplet (𝜆 = 0), low capillary number
(Bretherton, F., JFM, 1961, 10, 166-188)

𝛽 = 1 + 1.29 3𝐶𝑎
2
3 𝐶𝑎 =

𝜇𝑐𝑉

σ



Goldsmith and Mason (1963)

ℎ(𝑧)
𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

Region in which fluid velocity inside droplet and 
continuous phase is parallel to the tube wall

𝑉

𝑈
=

1 + 4
𝑏
𝑟 − 6

𝑏
𝑟

2

+ 4
𝑏
𝑟

3

−
𝑏
𝑟

4

−1 + 𝜆

 1 + 2
𝑏
𝑟 −

𝑏
𝑟

2

(−1 + 2𝜆)

By solving hydrodynamic (Stokes) 
equations in ‘parallel region’ they 
found relation between mobility 
and film thickness for viscous 
droplet:



Schwartz, Princen and Kiss (1986)

Extension of Bretherton’s approach for viscous droplets:

𝜂 𝑍 ≡
ℎ 𝑧

𝑏

𝛿 ≡
𝜆𝑏

𝑟
𝑠 𝛿 =

1 + 2𝛿 −
2𝛿

1 + 4𝛿
1 + 𝛿

,

𝑍 ≡
𝑧

𝑏
3𝐶𝑎 𝑠 𝛿

1
3,

𝑑3𝜂 𝑍

𝑑𝑍3
=

𝜂 − 1

η3

1 + 2𝛿𝜂 −
2𝛿

1 + 4𝛿
1 + 𝛿𝜂

1 + 𝛿

1 + 2𝛿 −
2𝛿

1 + 4𝛿

Equation for shape (lets call it viscous Landau-Levitch equation):

ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐



Schwartz, Princen and Kiss (1986)

Ondulations at the rear (rescaled by viscosity od droplet)
Parabolic behavior at the front
Bretherton matching

𝑏

𝑟
= 3𝐶𝑎

2
3 𝑃 𝜆

𝑏

𝑟
,

𝑃 𝑥 simple fit given

The above formula allows to numerically find the film thickness (and therefore the droplet 
mobility)
For every viscosity ratio and capillary number the numerical solution is needed.
Is there a simple way to represent ?𝑏

𝑟
=

𝑏

𝑟
𝐶𝑎 , 𝜆



Ballestra, Zhu, Gallaire (2017)

𝑏

𝑟
= 3𝐶𝑎

2
3 𝑃 𝜆

𝑏

𝑟

𝑏

𝑟
= 3𝐶𝑎

2
3  𝑃 𝜆

 𝑃 𝜆 =
0.643

2
1 + 2

2
3 + 2

2
3 − 1 𝑡𝑎𝑛ℎ 1.28 log10 𝜆 − 2.36

For theoretical part they start where Schwarz, Princen and Kiss finished:

and introduce phenomenological approximation:

Therefore they have simple formula for the film thickness and thus mobility
-with another approximation that goes beyond Bretherton approximation



Our results

𝑏

𝑟
= 3𝐶𝑎

2
3 𝑃 𝜆

𝑏

𝑟

We start where Schwarz, Princen and Kiss finished:

But we rewrite it: 𝜆
𝑏

𝑟
= 𝜆 3𝐶𝑎

2
3 𝑃 𝜆

𝑏

𝑟
𝛿 = 𝜆 3𝐶𝑎

2
3 𝑃 𝛿

Value of 𝛿 depends solely on 𝜆 3𝐶𝑎
2

3 parameter!!!
Numerical solution gives:

𝑐𝑓𝑖𝑡 𝑔 = 𝑡 0 +
𝑔 + 𝑏4𝑔2 +  𝑡 0 2  2 3 − 𝑡(0 𝑔3

𝑏1 + 𝑏2𝑔 + 𝑏3𝑔2 + 𝑔3

𝑏1 = 4.109, 𝑏2 = 8.906, 𝑏3 = 10.144, 𝑏4 = 3.575.

𝛿 ≡ 𝜆
𝑏

𝑟
= 𝑐 𝜆 3𝐶𝑎

2
3

𝛿 ≡ 𝜆
𝑏

𝑟



𝜖 ≡
𝑏

𝑟
= 3𝐶𝑎

2
3 𝑐𝑓𝑖𝑡 𝜆 3𝐶𝑎

2
3 ,

𝑐𝑓𝑖𝑡 𝑔 = 𝑡 0 +
𝑔 + 𝑏4𝑔2 +  𝑡 0 2  2 3 − 𝑡(0 𝑔3

𝑏1 + 𝑏2𝑔 + 𝑏3𝑔2 + 𝑔3

𝑏1 = 4.109, 𝑏2 = 8.906, 𝑏3 = 10.144, 𝑏4 = 3.575, t 0 = 0.643

𝐶𝑎 =
𝜇𝑐𝑉

σ
𝜆 =

𝜇𝑑

𝜇𝑐
𝑔 ≡ 𝜆 3𝐶𝑎

2
3

𝛽 =
𝑈

𝑉
=

1 + (−2𝜖 + 𝜖2)(1 − 2𝜆)

1 + (4𝜖 − 6𝜖2 + 4𝜖3 − 𝜖4) −1 + 𝜆

Easy to use expression for mobility
(lubrication approximation + Bretherton matching)



𝛽 − 1



Schwartz, Princen and Kiss (1986)

𝛽 = 1 + 1.29 3𝐶𝑎
2
3

Extension of Bretherton’s approach for viscous droplets:
Between parallel plates:
Teletzke, G. F.; Davis, H. T. & Scriven, L. Revue de Physique Appliquee, 1988, 23, 989-1007

In channels of circular cross-sections:
Hodges, S.; Jensen, O. & Rallison, J., JFM, 2004, 501, 279-301



Dominant effects

Viscous and interfacial forces:

Inertial and viscous effects:

Gravitational and interfacial effects:

𝐶𝑎 =
𝜇𝑐𝑉

σ

𝑅𝑒 =
𝜌𝑐𝑑𝑉

𝜇𝑐

𝐵𝑜 =
Δ𝜌𝑑2

𝜎
≈ 0.01

≈ 0.001 for V = 1
cm

𝑠

water droplets in FC-40 oil
tube diameter:

≈ 3.6 for V = 1
cm

𝑠

𝑑 = 0.8 𝑚𝑚



Theoretical model: stationary Stokes equations

Governing parameters:

• Ratio of viscosities

• Capillary number

• Length of droplet
(numerical simulations: mobility does not change for                 )

Lac, E. & Sherwood, J., JFM, 2009, 640, 27-54

𝜆 =
𝜇𝑑

𝜇𝑐

𝐶𝑎 =
𝜇𝑐𝑉

σ

𝑙
𝑙 > 2𝑑

tube diameter



ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

Theoretical model: stationary Stokes equations

Lubrication layer Semi-spherical cap



𝑏

𝑟
= 3𝐶𝑎

2
3𝑐 𝜆 3𝐶𝑎

2
3 ,

Our theoretical results

Consequent application of low 𝐶𝑎 condition leads to scaling,

and mobility of droplet (𝜆 =
𝜇𝑑

𝜇𝑐
, 𝐶𝑎 =

𝜇𝑐𝑉

σ
,) can be calculated 

as follows:

𝛽 ≡
𝑈

𝑉
= 1 + 2

𝑏

𝑟

1 + 2
𝑏
𝑟

𝜆

1 + 4
𝑏
𝑟

𝜆.

𝑐𝑓𝑖𝑡 𝑔 = 𝑡 0 +
𝑔 + 𝑏4𝑔2 +  𝑡 0 2  2 3 − 𝑡(0 𝑔3

𝑏1 + 𝑏2𝑔 + 𝑏3𝑔2 + 𝑔3

𝑡 0 = 0.643, 𝑏1 = 4.109, 𝑏2 = 8.906,
𝑏3 = 10.144, 𝑏4 = 3.575.

Film thickness:



𝛽 − 1

Our theoretical results

viscosity ratio

To observe the above changes with viscosity, 
relative error of  measurement of mobility 
should be less than about 1/1000



In collaboration with Michał Horka, Jean Baptiste-Gorce
and Piotr Garstecki

Summary
• Theory: practical formula for mobility of long, non-wetting droplets
• Preliminary experimental verification (error of measurements < 

1/1000)

Further goals:
• broader range of capillary numbers and viscosities
• can that be used to measure viscosity, surface tension? what accuracy?



Stokes equations in cylindrical system

𝜕𝑧𝑝𝑑 𝜌, 𝑧 = 𝜇𝑑𝜌−1𝜕𝜌𝜌𝜕𝜌𝑣𝑑(𝜌, 𝑧),

𝜕𝜌𝑝𝑑(𝜌, 𝑧) = 0

1

𝜌
𝜕𝜙𝑝𝑑(𝜌, 𝑧) = 0,

𝛻 ⋅  𝑣𝑑 = 0

Boundary conditions

 𝑣𝑐 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

=  𝑣𝑑 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

,

 𝜇𝑐𝜕𝜌𝑣𝑐 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

=  𝜇𝑑𝜕𝜌𝑣𝑑 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

,

 𝑝𝑐 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

+ 𝜎𝜅(𝑧) =  𝑝𝑑 𝜌, 𝑧
𝜌=𝑟−ℎ(𝑧)

,

 𝑣𝑐 𝜌, 𝑧 𝜌=𝑟 = 0.



𝜅 𝑧 ≈
1

𝑟 − ℎ 𝑧
+

𝑑2ℎ 𝑧

𝑑𝑧2
.

ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

In lubrication region pressure does not depend on 𝜌.
It simplifies boundary condition for pressure jump.

𝑑𝑝𝑐 𝑧

𝑑𝑧
+ 𝜎

𝑑3ℎ 𝑧

𝑑𝑧3
=

𝑑𝑝𝑑 𝑧

𝑑𝑧

d𝑝𝑑 𝑧

dz
= 𝜇𝑑𝜌−1𝜕𝜌𝜌𝜕𝜌𝑣𝑑(𝜌, 𝑧),

..which we use in Stokes equation for z direction (for droplet and continuous phase):

..which with boundary condition gives 𝑣𝑑(𝜌, 𝑧) and 𝑣c(𝜌, 𝑧) for given 𝑧:



𝑣𝑑 𝜌, 𝑧

=
1

4𝜇𝑑

𝑑𝑝𝑑 𝑧

𝑑𝑧
𝜌2 − 𝑟 − ℎ 2 +

1

4𝜇𝑐

𝑑𝑝𝑑 𝑧

𝑑𝑧
− 𝜎

𝑑3ℎ 𝑧

𝑑𝑧3
𝑟 − ℎ 2 − 𝑟2

+
1

2𝜇𝑐
𝜎

𝑑3ℎ 𝑧

𝑑𝑧3
𝑟 − ℎ 2 ln

𝑟 − ℎ

𝑟

𝑣𝑐 𝜌, 𝑧 =
1

4𝜇𝑐

𝑑𝑝𝑑 𝑧

𝑑𝑧
− 𝜎

𝑑3ℎ 𝑧

𝑑𝑧3
𝜌2 − 𝑟2 +

1

2𝜇𝑐
𝜎

𝑑3ℎ 𝑧

𝑑𝑧3
ln

𝜌

𝑟

Velocity field in lubrication regime

…but 
𝑑𝑝𝑑 𝑧

𝑑𝑧
and 

𝑑3ℎ 𝑧

𝑑𝑧3 are unknown (we may treat 𝑧 as parameter) 



Two unknows
𝑑𝑝𝑑 𝑧

𝑑𝑧
and 

𝑑3ℎ 𝑧

𝑑𝑧3 are determine from two 

conditions for flux:

Total flux through the cross section is the same for all z.

In the coordinate system in which droplet is at rest, 
the flux of the droplet phase vanishes.

2𝜋  
0

)𝑟−ℎ(𝑧

𝑑𝜌 𝜌 𝑣𝑑 𝜌, 𝑧 − 𝑈 = 0

𝜋𝑟2𝑉 = 2𝜋  
0

)𝑟−ℎ(𝑧

𝑑𝜌 𝜌 𝑣𝑑 𝜌, 𝑧 + 2𝜋  
)𝑟−ℎ(𝑧

𝑟

𝑑𝜌 𝜌 𝑣𝑐 𝜌, 𝑧



𝜂 𝑍 ≡
ℎ 𝑧

𝑏
𝜖 ≡

𝑏

𝑟

𝛿 ≡ 𝜆𝜖

𝑠 𝛿 =
1 + 2𝛿 −

2𝛿
1 + 4𝛿

1 + 𝛿
, 𝑍 ≡

𝑧

𝑏
3𝐶𝑎 𝑠 𝛿

1
3,

𝑑3𝜂 𝑍

𝑑𝑍3
=

𝜂 − 1

η3

1 + 2𝛿𝜂 −
2𝛿

1 + 4𝛿
1 + 𝛿𝜂

1 + 𝛿

1 + 2𝛿 −
2𝛿

1 + 4𝛿

Equation for shape of the droplet in lubrication regime

Rescaling…

Equation for shape (lets call it viscous Landau-Levitch equation):

ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐



𝜂 𝑍 ≡
ℎ 𝑧

𝑏

Linearized equation for shape of the droplet

ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

Linearized viscous Landau-Levitch equation (for 𝜂 𝑍 − 1 ≪ 1)

𝑑3𝜂 𝑍

𝑑𝑍3
= 𝜂 − 1

𝜂 𝑍 = 1 + 𝛼1𝑒𝑍 + 𝛼2𝑒−
1
2𝑍 cos

3

2
𝑍 + 𝛼3𝑒−

1
2𝑍 sin

3

2
𝑍



𝜂 𝑍 ≡
ℎ 𝑧

𝑏

Linearized equation for shape of the droplet

ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

Linearized viscous Landau-Levitch equation (for 𝜂 𝑍 ≫ 1, but 𝜂 𝑍 ≪
𝑟

𝑏
)

𝑑3𝜂 𝑍

𝑑𝑍3
≈ 0

𝜂 𝑍 =
𝑡 𝛿

2
)𝑍 − 𝑍0(𝛿

2
+ 𝑞 𝛿



ℎ(𝑧)

𝑟

𝑅𝐹

𝑧

𝜌

𝑏 = lim
𝑧→−∞

ℎ(𝑧)

𝜇𝑑 = 𝜆𝜇𝑐 𝜇𝑐

𝑑3𝜂 𝑍

𝑑𝑍3
=

𝜂 − 1

η3

1 + 2𝛿𝜂 −
2𝛿

1 + 4𝛿
1 + 𝛿𝜂

1 + 𝛿

1 + 2𝛿 −
2𝛿

1 + 4𝛿

Therefore viscous LL equation

may be solved numerically for given 𝛿 ≡
𝜆𝑏

𝑟
starting from function

𝜂 𝑍 = 1 + 𝑒𝑍 (small Z)

for small 𝑍. In this way we can determine 𝑡 𝛿 in large 𝑍 behavior:

𝜂 𝑍 =
𝑡 𝛿

2
)𝑍 − 𝑍0(𝛿

2
+ 𝑞 𝛿 (large Z)

This determines curvature 
which is matched to semi-
spherical cap

1

𝑅𝐹(≈ 𝑟)
=

𝑑2ℎ 𝑧

𝑑𝑧2



𝛿 = 𝜆 3𝐶𝑎
2
3 𝑡 𝛿 𝑠 𝛿

2
3

𝛿 ≡
𝜆𝑏

𝑟

𝑠 𝛿 =
1 + 2𝛿 −

2𝛿
1 + 4𝛿

1 + 𝛿
Given numerically from the solution of viscous LL equation.

Matching condition leads to the following equation for 𝛿

Lets denote it by 𝑔 ≡ 𝜆 3𝐶𝑎
2

3.

Value of 𝛿 depends solely on 𝑔 parameter!!!


